Designing a closed box loudspeaker

In the following text it is assumed that we chose a speaker element with parameters, Q_{ts} , f_{S} , V_{AS} . Then we design a suitable box by choosing its volume, V_{B} , so as to get desired characteristics.

1. Decide system Q, or loudspeaker characteristics, by choosing Q_{tc} (this affects resonance frequency, f_B):

A. At lower frequencies

where the wavelength is

whole room will be pres-

diaphragm outside of the

surized by the speaker

box in the same way as

inside the box. This is

called room gain or room

lift and will give a sound

pressure increase of max 9

dB for the lowest frequen-

that the room is relatively

closed and not leaking, no

cies. Room gain requires

leak free with all doors

larger than the largest

room dimensions the

$0.5 \le Q_{tc} \le 1$, ideal interval $0.6 \le Q_{tc} \le 0.9$

large windows ("the base leaks out through the window"). The smaller and less leaky the room is the closer to 9 dB you will get.

The largest dimension x, of a rectangular room is a diagonal from corner to corner.

 $x = \sqrt{a^2 + b^2 + c^2}$, a, b, c are the rooms length, width and height

If the room is relatively free from leakage we get an increase of sound pressure for

$$f < \frac{c}{x} = \frac{340}{x} Hz$$

Example. Two rooms measure 2.5*4*5 respectively 2.5*3,5*4 meter. This yield $X = \sqrt{2,5^2 + 4^2 + 5^2} = 6.87$ respectively 5.87 m. Combining yields $f < \frac{340}{6.87} =$ 50 Hz and 58 Hz respectively. We see that for normal rooms we may get a sound pressure increase in the interval 0-9 dB for frequencies under 50-60 Hz.

B. If a loudspeaker diaphragm is less than circa 1/16 wave length from a rigid area (floor, wall, ceiling) sound pressure will rise by 3dB because the space it radiates into is halved compared to the space with no rigid area. We talk about a half space or 2π sr (steradians). If it is close to two rigid orthogonal surfaces, for example on the floor against a wall (π sr) we get 6 dB rise, and if the loudspeaker stands in a corner ($\pi/2$ sr), the rise is 9 dB.

Taken together these effects can give a rise of 18 dB and can thus dramatically change the perceived characteristics of the loudspeaker in a listening room compared to calculated or characteristics measured in an echo free heavily damped room, figure 2.

Figure 2 shows that at low frequencies, when *room gain* and radiation into π or $\pi/2$ space contribute largely, it is preferable to choose a small Qtc. If we disregard room gain in figure 2, open doors, large windows, etc, we see that f3 is lowered from 60 Hz to 26-27 Hz due to three rigid surfaces only.

Figure 2. Frequency curves for a speaker element ($f_s = 20Hz$) in different boxes. To "basic curve", which corresponds to Qtc \approx 0,7-0,8, has been added contributions from three hard surfaces that give max 9 dB, and room gain chosen to be 5 db @ 20Hz with a drop off of 5 dB/octave (original diagram from Newell & Holland, Loudspeakers..., ISBN 0-2405-2014-9, and data from Colloms, High Performance Loudspeakers, ISBN 0-470-09430-3)

2. Now we investigate what speaker element to pick by trying different elements that have specific Qts, fs och VAS. Calculate

Figure 3. α as a function of Qts and Qtc

3. Calculate box volume. Large α yield small box.

$$V_B = \frac{V_{AS}}{\alpha}$$

4. Calculate system resonance frequency

$$f_B = \frac{Q_{tc}}{Q_{ts}} f_S$$

Small Q_{ts} gives large f_B . It is best not to pick to small a value for Q_{ts} . 5. Calculate the frequency for which sound pressure has fallen 3 dB.

$$f_{3} = \left| \left(\frac{1}{2Q_{tC}^{2}} - 1 \right) + \right| \left| \left(\frac{1}{2Q_{tC}^{2}} - 1 \right)^{2} + 1 \right| \cdot f_{I}$$

$$f_{3} = f(Q_{tc}) \cdot f_{b} = f(Q_{tc}) \cdot \frac{Q_{tc}}{Q_{ts}} f_{s}$$

An interesting function is $f(Q_{tc})$.		
Q_{tc}	$f(Q_{tc})$	$f(Q_{tc}) \cdot Q_{tc}$
0.5	1.554	0.777
0.6	1.209	0.725
0.707	1	0.707
0.8	0.897	0.718
0.9	0.829	0.747
1	0.786	0.786
1.1	0.757	0.832
1.2	0.736	0.883
1	1	1

Comments

have

- **Q**_{ts} in the interval 0,3-0,5
- \Box **f**_s as low as possible
- mand on small V_{AS} than if Q_{ts} is larger, see figure 5.

References: Small, Richard. H., Closed-box Loudspeaker Systems Part I & II, JAES Vol 20, no10, pp798-808, Dec 1972, & JAES Vol 21, no 1, pp11-18; Feb 1973; Newell & Holland, Loudspeakers..., ISBN 0-2405-2014-9; Colloms, High Performance Loudspeakers, ISBN 0-470-09430-3.

De	esigning a
Issuer: Lars Holmdahl	l
Accepted:	

Figure 5. α = V_{AS}/V_B and f3/fs (curves close together) as functions of Qts and Qtc

It is apparent from figure 5 that a suitable speaker element for a closed box design should

□ V_{AS} should not be to large depending on selection of Q_{ts}. Small Q_{ts} put less de-

a closed box loudspeaker		
	ver: 1	Date: 2011-09-18
		Date: